UNIT-3

3DObjectRepresentations

Methods:

- PolygonandQuadricsurfaces: ForsimpleEuclideanobjects
- Splinesurfacesandconstruction:Forcurvedsurfaces
- Proceduralmethods:Eg.Fractals,Particlesystems
- Physicallybased modelingmethods
- OctreeEncoding
- Isosurfacedisplays, Volumerendering, etc.

Classification:

 $Boundary Representations (B-reps)\ eg. Polygon facets and spline patches Space-partitioning representations\ eg. Octree Representation$

Objectsmayalsoassociate withotherproperties such as mass, volume, so as todetermine their response to stress and temperature etc.

PolygonSurfaces

Thismethodsimplifies and speeds upthe surface rendering and display of objects.

Forother3D objection representations, they are often converted into polygon surfaces before rendering.

PolygonMesh

- Usingasetofconnectedpolygonallyboundedplanarsurfacestorepresentanobject,whichmayhav ecurved surfaces or curved edges.
- Thewireframedisplayofsuchobjectcanbedisplayedquicklytogivegeneralindicationofthe surfacestructure.
- Realisticrenderingscanbeproducedbyinterpolatingshadingpatternsacrossthepolygonsu rfaces toeliminate orreducethepresenceof polygonedgeboundaries.

PolygonTables

This is the specification of polygonsurfacesusing vertex coordinates and other attributes:

- 1. Geometricdatatable:vertices,edges,andpolygon surfaces.
- 2. Attribute table: eg. Degree oftransparency and surface reflectivityetc.

Someconsistencychecksofthegeom etricdata table:

Department of CSE Page 1 of 4

- Everyvertexislistedasanendpointforat least 2 edges
- Everyedgeis part of at least one polygon
- Everypolygonis closed

Planeequation and visible points

Consider a cube, each of the 6 planes has 2 sides: insideface and outside face.

$$A = \begin{bmatrix} 1 & y_1 & z_1 \\ 1 & y_2 & z_2 \\ 1 & y_3 & z_3 \end{bmatrix}$$

$$B = \begin{vmatrix} x_1 & 1 & z_1 \\ x_2 & 1 & z_2 \\ x_3 & 1 & z_3 \end{vmatrix}$$

$$C = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

$$A = \begin{bmatrix} 1 & y_1 & z_1 \\ 1 & y_2 & z_2 \\ 1 & y_3 & z_3 \end{bmatrix} \qquad B = \begin{bmatrix} x_1 & 1 & z_1 \\ x_2 & 1 & z_2 \\ x_3 & 1 & z_3 \end{bmatrix} \qquad C = \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix}$$

Then, the plane equation at the form: Ax+By+Cz+D=0 has the property that:If

wesubstitute anyarbitrarypoint (x,y) intothis equation, then,

Ax + By + Cz + D < 0 implies that the point (x,y) is inside the surface, and Ax

+By+Cz+D < 1 implies that the point (x,y) is outside the surface.

PolygonMeshes

Common types of polygon meshes are triangle strip and quadrilateral mesh.

Fasthardware-implementedpolygon renderersarecapableofdisplayingupto1,000,000ormore shaded triangles per second, including the application of surface texture and speciallightingeffects.

CurvedSurfaces

- 1. Regularcurvedsurfacescanbe generatedas
- QuadricSurfaces, eg.Sphere,Ellipsoid,or
- Superquadrics, eg. Superellipsoids

These surfaces can be represented by some simple parametric equations, eg, for ellipsoid: $x=r_x\cos\theta$

$$s^{1}\cos^{s2}$$
,- $/2 \not = \theta \pi \phi <=/2$
 $y=r_{y}\cos^{s1}\sin^{s2}$,- $<\theta \pi \theta <=z\pi$
 $=r_{z}\sin^{s1}\phi$

Department of CSE Page 2 of 4 Wheres 1, r_x , r_y , and r_x are constants. By varying the values of ϕ and θ , points on the surface can be computed.

2. Irregularsurfacescanalsobegenerated using some specialformulating approach, to form a kind of**blobby objects** -- The shapes showing acertaindegreeof fluidity.

Department of CSE Page 3 of 4

SplineRepresentations

Spline means a flexible strip used to produce a smooth curve through a designated set ofpoints. Several small weights are distributed along the length of the strip to hold it in positiononthe draftingtableas the curve drawn.

We can mathematically describe such a curve with a piecewise cubic polynomial function =>splinecurves. Thenasplinesurfacecanbedescribedwith 2sets of orthogonal splinecurves.

SweepRepresentations

Sweeprepresentationsmeansweepinga2Dsurfacein3Dspacetocreateanobject.However, the objects created by this method are usually converted into polygon meshesand/orparametricsurfaces before storing.

ATranslationalSweep:

ARotationalSweep:

Othervariations:

- Wecan specifyspecial path forthe sweep as somecurve function.
- Wecan varythe shapeorsize of the cross sectional ong the sweeppath.
- Wecan also varytheorientation of the cross section relative to the sweep path.

Department of CSE Page 4 of 4